Genetic Changes and Nutrient/Water Stress Interaction Consequences for NUE Improvement in Rainfed Corn

TONY J. VYN

(SARAH MUELLER, KERU CHEN, LIA OLMEDO PICO, REX OMONODE)

AGRONOMY DEPARTMENT
PURDUE UNIVERSITY
Corn Hybrid Era Gains in Yield and in Recovery of Late-Season N Applications?

<table>
<thead>
<tr>
<th>N Treatment Name</th>
<th>kg N ha⁻¹ @ V3-V4</th>
<th>kg N ha⁻¹ @ R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200_0</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>150_50</td>
<td>150</td>
<td>50</td>
</tr>
</tbody>
</table>

Hybrids (1946-2015)

1. 352HYB (1946)
2. 354A (1958)
3. 3390 (1967)
4. 3382 (1976)
5. 3335 (1995)
6. 34N42 (2003)

Source: Mueller et al., 2019, Scientific Reports
Pioneer Era Hybrid - Grain Yield Response to N Timing

Modern hybrids produce more yield per unit N applied.

Source: Mueller et al., 2019, Scientific Reports
Grain Yield Response to N Rate with Pioneer Era Hybrids (average of 2016-2017)

\[y = 0.7589x - 1404.9 \]
\[R^2 = 0.9623 \]

\[y = 2.0359x - 3840.3 \]
\[R^2 = 0.9706 \]

Source: Mueller et al., 2019
Nitrogen Fertilizer Recovery Efficiency (NRE) Matters!

$$\text{NRE (\%)} = \frac{\text{Total N uptake at any N rate (lb/acre)} - \text{Total N Uptake at Zero N (lb/acre)}}{\text{Actual N RATE APPLIED (lb/acre)}} \times 100$$

Photo credit: Mike Shuter

2015 Hybrid

1958 Hybrid
Nitrogen Use Efficiency Changes over Time

Source: Mueller et al., 2019, Scientific Reports
Kernel Number and Kernel Weight Gains in Pioneer “Era” hybrids with year of commercial release (West Lafayette, 2016-2017)

Source: Mueller and Vyn, unpublished, 2018
Nitrogen Recovery Efficiency with Pioneer Era Hybrids (Two N timing treatments; 2016-2017)
Corn Side-dress N Placement Experiment 2017-19

July 17

July 25

September 8
Late-Split UAN applied at V12 by Y-Drops (2015-2019)
Kernel Weight Gain during Grain Fill as Affected by N Rate/Timing

84 bu/ac
15 pounds N/acre

241 bu/ac
200 pounds N/acre,
All applied at planting

254 bu/ac
200 pounds N/acre,
150 at planting, 50 at V12

Kernel Weight Gain during Grain Fill as Affected by N Rate/Timing

Days from silking to dry weight gain plateau in kernels

Peak at: 51 days 55 days 56 days
Kernel #/m²: 2500 4600 4500
Corn NRE Response to Tillage Systems Following Soybean (2015-2018)

Source: Omonode and Vyn, unpublished
Rainfall Timing and Consequences for NRE

Source: Omonode and Vyn, JEQ, 2019
Global Maize: Selected Summary Results for Corn (2012-2018)

<table>
<thead>
<tr>
<th>Plant Density/Nutrient Management System Treatment</th>
<th>Time to 50% silk emergence (days)</th>
<th>R1 Earleaf N (%)</th>
<th>R1 Earleaf K (%)</th>
<th>Grain Yield (bu/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP- 31,000 ppa, Zero N</td>
<td>80.9 b</td>
<td>1.73 d</td>
<td>1.69 c</td>
<td>105 e</td>
</tr>
<tr>
<td>FP- 31,000 ppa, 100 N</td>
<td>79.1 de</td>
<td>2.61 c</td>
<td>1.80 b</td>
<td>188 d</td>
</tr>
<tr>
<td>FP- 31,000 ppa, 160 N</td>
<td>78.7 e</td>
<td>2.75 b</td>
<td>1.81 b</td>
<td>208 c</td>
</tr>
<tr>
<td>EI- 38,000 ppa, Zero N (plus Aspire, Instinct, and AMS)</td>
<td>82.3 a</td>
<td>1.69 d</td>
<td>1.82 b</td>
<td>101 f</td>
</tr>
<tr>
<td>EI- 38,000 ppa, 160 N (plus Aspire, Instinct, and AMS)</td>
<td>79.6 cd</td>
<td>2.78 b</td>
<td>1.92 a</td>
<td>217 b</td>
</tr>
<tr>
<td>EI- 38,000 ppa, 160 + 60 N (plus Aspire, Instinct, and AMS)</td>
<td>79.8 c</td>
<td>2.91 a</td>
<td>1.92 a</td>
<td>225 a</td>
</tr>
</tbody>
</table>

Source: Vyn, West and Omonde (unpublished)

Nitrogen Use Efficiency (kg kg\(^{-1}\))

Nitrogen Recovery Efficiency (%)

Daily \(\text{N}_2\text{O} \) (g N ha\(^{-1}\) d\(^{-1}\))

\[Y = 4.03 - 0.024x \]
\[R^2 = 0.23; P = 0.017 \]

N = 24
Summary of Some Controlling Factors in “NUE Improvement”

- Rainfall amount and timing after N application.
- N rate and timing relative to corn N uptake. Amount of prior N applied relative to corn N demand before the most recent N applied becomes available is critical.
- N source (inhibitors added?) and adequacy of other nutrients (e.g. K).
- Genetics and Plant Density (and consequences for kernel number/weight and kernel N)
- Extent of post-silking N uptake for that hybrid and environment.
- Tillage and Rotation System
Acknowledgments
Thank You